# A Numerical Integration Method in Three Dimensional Complex Domain with Voronoi Polyhedra: Applications to First-Principles Electronic-Structure Calculations 

Masaru AOKI

I . Introduction<br>II . Integration Scheme<br>III. Voronoi Partition<br>IV. Tests for Precision of Numerical Integration Method<br>V. Applications to First-Principles Electronic-Structure Calculations<br>VI. Summary and Conclusions<br>Appendix A: Selection Method of Points inside Domain<br>Appendix B: Selection Method of Vertices of Voronoi Polyhedron<br>Appendix C: Signed Area and Signed Volume

## I . Introduction

The development of general methods for three dimensional(3D) numerical integration effective for a complex domain is one of the most important and difficult problems in the numerical analysis. Increase of computer capability like recent parallel computers with large memory demands such kind of general and flexible scheme applicable to various fields like electronic-structure calculations, fluid dynamics, finite element method, boundary value problems, and electro-magnetic field calculations and so on. The main difficulties in the numerical integration are control of precision and treating of the complex domain of integration. A straightforward application of the standard cubature formula always needs a coordinate transformation dependent on the shape of the domain. In the case of an infinite domain like molecules or clusters, Becke's multicenter integration scheme ${ }^{1)}$ is effective enough to keep accuracy for the charge of the system. Cellular methods associated with electronic structure calculations for molecules and solids have been developed by Boerrigter, Velde, and Baerends ${ }^{2), 3 \text { ) }}$ in which the space is partitioned into Wigner-Seitz (WS) cell (Voronoi polyhedron) constructed by planes that are perpendicular bisector planes of lines drawn from an atom to the surrounded atoms. Each WS cell is partitioned into the atomic sphere and the interstitial region. The integral inside the sphere is calculated with Gaussian quadrature in radial component and with product Gaussian formula in angular components. Gaussian

[^0]quadrature is used to calculate the integral in the interstitial region with transformed three coordinates．Averill and Painter ${ }^{4}$ improved the method by introducing the pseudospherical coordinates for general cone．

The author has developed a new integration method effective for a general 3D complex domain with sufficient accuracy on the basis of general Voronoi partition scheme．The essence of the method is an inclusion of concave Voronoi polyhedra，which allows us to treat complex domain of integration without coordinate transformation for the interstitial region．In the method，Voronoi partition is used not only in construction of the WS cells around each atom but also in partition of the interstitial regions to tetrahedra．The region is partitioned into convex Voronoi polyhedra and concave ones．The concave polyhedron is formed under situation that the polyhedron sticks on concave boundary surface．The Voronoi polyhedra can be further partitioned into tetrahedra and the integral of a function is calculated in each tetrahedron using standard cubature formula given by Stroud．${ }^{5)}$

This paper is organized as follows．In Chapter II the integration scheme is presented．The algorithm of Voronoi partition is given in Chapter III．In Chapter IV the precision of the numerical integration method is tested for the calculation of charge integral in simple cubic（s．c．），face centered cubic（f．c．c．），body centered cubic（b．c．c．），and diamond structures．In Chapter V the method is applied to calculate the binding energy of $\mathrm{Ar}_{2}$ dimer and the cohesive energy of Ar crystal．Summary and conclusions are in Chapter VI．Appendix A－C contain some additional notes of the Voronoi partition method．

## II．Integration Scheme

In numerical analysis the integral of a function $f(\vec{r})$ over a domain $\Omega$ ，

$$
\begin{equation*}
I=\int_{\Omega} f(\vec{r}) d \vec{r}, \tag{1}
\end{equation*}
$$

is approximately calculated by cubature formula with integration points $\vec{r}_{k}$ and appropriate weights $\omega_{k}$ as

$$
\begin{equation*}
I \cong Q(f)=\sum_{k} \omega_{k} f\left(\vec{r}_{k}\right) \tag{2}
\end{equation*}
$$

In the present method，firstly random points for constructing Voronoi polyhedra are distributed in the domain．According to the geometrical configuration of the points，the domain is partitioned into Voronoi polyhedra and then each polyhedron is partitioned into tetrahedra．The integral over each tetrahedron is calculated with standard cubature formula based on a polynomial interpolation．${ }^{5}$ ）Then the integral（2）becomes

$$
\begin{equation*}
Q(f)=\sum_{i} \sum_{j} \omega_{t i j} f\left(\vec{r}_{i j}\right) ; \quad i=1, \ldots, N_{t e t}, \quad j=1, \ldots, N_{g} \tag{3}
\end{equation*}
$$

where $N_{\text {tet }}$ is the number of tetrahedra and $N_{g}$ is the number of integration points in each

[^1]tetrahedron.

## III. Voronoi Partition

Generally, the shape of Voronoi polyhedron is convex in a bulk system such as crystals, glasses, and so on. Studies on the constructions of the Voronoi polyhedra have been confined to the convex polyhedron. ${ }^{6,7)}$ However, the present method can treat the concave Voronoi polyhedron too. In the present paper, the domain of integration has a boundary which is composed of aggregation of polygons. If the boundary is curved surface, the surface is approximated with polygons which may include concave polygons. In partitioning the domain into Voronoi polyhedra, we obtain two types of polyhedra, i.e., concave polyhedra and convex polyhedra. The concave polyhedra are constructed on the concave boundary surface. The polyhedron is called concave Voronoi polyhedron. Figure 1 illustrates an example of the polyhedron. The concave part is the boundary of the domain. The algorithm of constructing general Voronoi polyhedra including the concave ones is presented in this chapter.


Fig.1. Figure of a concave Voronoi polyhedron.

## 1. Definitions

The domain of integration in 3 D space is denoted by $\Omega$. The shape of the domain is not restricted to convex. The boundary $C$ of the domain is defined by the set of polygons

$$
\begin{array}{r}
c_{j} ; j=1, \ldots, N_{c}, \\
C=\prod_{j=1}^{N_{C}} c_{j}, \tag{4}
\end{array}
$$

where the vertices of the polygon $c_{j}$ are sorted in a constant direction and $\vec{n}_{j}$ is the outward pointing normal vector. The shapes of the polygons are arbitrary. Hereafter, the polygon is

[^2]called boundary polygon（boundary edge in 2D case）．
Points at coordinates $\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{N_{o}} \in \Omega$ are denoted by symbols $o_{1}, o_{2}, \ldots, o_{N_{o}}$ ．A function $f: o_{i} \rightarrow \Omega_{i}$ for $\Omega_{i} \subset \Omega$ such as the inverse $f^{-1}: \Omega_{i} \rightarrow o_{i}$ exists for the domain $\Omega$ ． Then the domain $\Omega$ is partitioned into regions $\Omega_{i} ; i=1, \ldots, N_{o}$ for each $o_{i}$ as
\[

$$
\begin{equation*}
\Omega=\prod_{i=1}^{N_{o}} \Omega_{i} \tag{5}
\end{equation*}
$$

\]

In this case the region $\Omega_{i}$ is a Voronoi polyhedron and the point $o_{i}$ is the center for constructing the Voronoi polyhedron．The points $o_{i} ; i=1, \ldots, N_{o}$ is called centers of Voronoi polyhedra or centers．The set of the all centers is denoted by $O$ ．Then Voronoi polyhedron $\Omega_{i}$ is defined by

$$
\begin{equation*}
\Omega_{i}=\left\{u \in \Omega \mid d\left(u, o_{i}\right)<d\left(u, o_{j}\right) ; j=1, \ldots, N_{o}(j \neq i)\right\} \tag{6}
\end{equation*}
$$

where $u$ is a point inside the domain $\Omega$ and $d\left(u, o_{i}\right)$ is Euclidean distance between the point $u$ and the center $o_{i}$ ．

Furthermore，the Voronoi polyhedron $\Omega_{i}$ can be partitioned into Voronoi polyhedra $\Omega_{i j} ; j=1, \ldots, N_{o i}$ ，of which the centers are $o_{i j} ; j=1, \ldots, N_{o i}$ ，as

$$
\begin{equation*}
\Omega_{i}=\prod_{j=1}^{N_{o i}} \Omega_{i j} \tag{7}
\end{equation*}
$$

Let us consider about the Voronoi polyhedron $\Omega_{i}$ ．A set of the centers $o_{j}$ around the center $o_{i}$ is denoted by $O_{i}$ ，i．e．，$O_{i} \equiv O-\left\{o_{i}\right\}$ ．Symmetry points $m_{1}, m_{2}, m_{3}, \ldots, m_{N_{c}}$ of the center $o_{i}$ exist with respect to boundary polygons $c_{1}, c_{2}, c_{3}, \ldots, c_{N_{c}}$ ．The set of the $m_{j}$ is denoted by $M_{i}$ ．A set $Q_{i}$ is defined by $Q_{i} \equiv O_{i} \cup M_{i}$ and the elements of the set $Q_{i}$ are denoted by $q_{1}, q_{2}, q_{3}, \ldots, q_{N_{q}} ; N_{q}=\left(N_{o}-1\right)+N_{c}$ ．

A perpendicular bisector plane of a segment $o_{i} q_{j}$ is denoted by $p\left(o_{i}, q_{j}\right)$ and the set by $P_{i}$ ．The elements of the set $P_{i}$ are denoted by $p_{1}, p_{2}, p_{3} \ldots, p_{N_{q}}$ too．Polygons $\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots, \sigma_{N_{\sigma}}$ of the Voronoi polyhedron $\Omega_{i}$ are perpendicular bisector polygons of lines drawn from the $o_{i}$ to the $q_{j} \in Q_{i}$ ．The edges of the Voronoi polyhedron $\Omega_{i}$ are denoted by $\gamma_{1}, \gamma_{2}, \gamma_{3}, \ldots, \gamma_{N_{v}}$ ．

An intersection of three planes $p\left(o_{i}, q_{j}\right), p\left(o_{i}, q_{k}\right), p\left(o_{i}, q_{\ell}\right) \in P_{i}$ is denoted by $t(j, k, \ell)$ and the set by $T_{i}$ ．The elements are denoted by $t_{1}, t_{2}, t_{3}, \ldots, t_{N_{t}}$ too．Vertices $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{N_{\lambda}}$ of the Voronoi polyhedron $\Omega_{i}$ are intersections of three planes $\left(\in P_{i}\right)$ ．The set of the vertices is denoted by $\Lambda_{i}$ ，i．e．，$\Lambda_{i} \subset T_{i}$ ．The vertices on a polygon $\sigma_{j}$ are denoted by
$\lambda_{j 1}, \lambda_{j 2}, \lambda_{j 3}, \ldots, \lambda_{j N_{\lambda j}}$ and the set by $\Lambda_{i j}$.
The Voronoi polyhedron $\Omega_{i}$ can be partitioned into pyramids of which the bases are $\sigma_{1}, \sigma_{2}, \sigma_{3}, \ldots, \sigma_{N_{\sigma}}$ and of which the top is $o_{i}$. The pyramids are denoted by $o_{i} \sigma_{j} ; j=1, \ldots, N_{\sigma}$. The each pyramid $o_{i} \sigma_{j}$ is further partitioned into tetrahedra of which the base is triangle $\lambda_{j 1} \lambda_{j k+1} \lambda_{j k+2} ; k=1, \ldots, N_{\lambda j}-2$ and of which the top is $o_{i}$. The triangle is denoted by $\sigma_{j k}$ and the tetrahedron is denoted by $o_{i} \sigma_{j k}$. The area of the $\sigma_{j k}$ is denoted by $S\left(\sigma_{j k}\right)$ and the volume of the $o_{i} \sigma_{j k}$ is denoted by $V\left(o_{i} \sigma_{j k}\right)$. The area $S\left(\sigma_{j}\right)$ of the $\sigma_{j}$ is given by

$$
\begin{equation*}
S\left(\sigma_{j}\right)=\sum_{k} S\left(\sigma_{j k}\right) \tag{8}
\end{equation*}
$$

and the volume $V\left(o_{i} \sigma_{j}\right)$ of the $o_{i} \sigma_{j}$ is given by

$$
\begin{equation*}
V\left(o_{i} \sigma_{j}\right)=\sum_{k} V\left(o_{i} \sigma_{j k}\right) . \tag{9}
\end{equation*}
$$

The surface area $S\left(\Omega_{i}\right)$ of the Voronoi polyhedron $\Omega_{i}$ is given by

$$
\begin{equation*}
S\left(\Omega_{i}\right)=\sum_{j} S\left(\sigma_{j}\right) \tag{10}
\end{equation*}
$$

and the volume $V\left(\Omega_{i}\right)$ of the $\Omega_{i}$ is given by

$$
\begin{equation*}
V\left(\Omega_{i}\right)=\sum_{j} V\left(o_{i} \sigma_{j}\right) . \tag{11}
\end{equation*}
$$

## 2. Voronoi Partition Algorithm

The Voronoi partition algorithm is shown as follows.

## Step 1.

Distribute random points in a box which contains the domain $\Omega$ and select centers $o_{i} \in \Omega ; i=1, \ldots, N_{o}$. The selection method is presented in Appendix A. Add the $o_{i} ; i=1, \ldots, N_{o}$ to the set $O$.

Hereafter, we consider the algorithm to construct the Voronoi polyhedron $\Omega_{i}$.
Step 2.
Find symmetry points $m_{j}$ of $o_{i}$ with respect to boundary polygon $c_{j}$. Add the $m_{j} ; j=1, \ldots, N_{c}$ to the set $M_{i}$ and the set $Q_{i}$. The $m_{j}$ in 2D case are shown as open circles in Fig.2.

## Step 3.

Find centers $o_{j}$ around the $o_{i}$. Add the $o_{j} ; j=1, \ldots, N_{o}-1$ to the set $O_{i}$ and the set $Q_{i}$. The $o_{j}$ in 2D case are shown as solid circles in Fig.2.

Step 4 and 5 are algorithms for all triplet $\alpha, \beta, \gamma\left(=1, \ldots, N_{q}\right)$ ．

## Step 4.

Calculate intersection $t_{j}=t\left(p_{\alpha}, p_{\beta}, p_{\gamma}\right)$ for $p_{\alpha}, p_{\beta}, p_{\gamma} \in P_{i}$ ．

## Step 5.

Judge the $t_{j} \in \Lambda_{j}$ or $\notin \Lambda_{j}$ by using the three checks in Appendix B．If the $t_{j} \in \Lambda_{j}$ ，then add the $t_{j}$ to the set $\Lambda_{j \alpha}$ ，the set $\Lambda_{j \beta}$ ，and the set $\Lambda_{j \gamma}$ ．

Following steps are algorithm to calculate the surface area $S\left(\Omega_{i}\right)$ and the volume $V\left(\Omega_{i}\right)$ ．

## Step 6.

Sort the vertices $\lambda_{j 1}, \lambda_{j 2}, \lambda_{j 3}, \ldots \in \Lambda_{i j} ; j=1, \ldots, N_{\sigma}$ in a constant direction．We can sort the vertices based on the information for the polyhedron．That is，if $\lambda_{1}, \lambda_{2} \in \Lambda_{i j}$ for ${ }^{\exists} j$ and $\lambda_{1}, \lambda_{2} \in \Lambda_{i k}$ for ${ }^{\exists} k$ ，then $\lambda_{1}, \lambda_{2} \in^{\exists} \gamma_{\ell}$.


Fig．2．Cluster of points around the center $o_{l}$ in 2D case．Shaded region is the outside of the domain $\Omega$ ．

Step 7.
Decompose the Voronoi polyhedron $\Omega_{i}$ into pyramids $o_{i} \sigma_{j} ; j=1, \ldots, N_{\sigma}$ and then into tetrahedra $o_{i} \sigma_{j k} ; j=1, \ldots, N_{\sigma}, k=1, \ldots, N_{\lambda j}-2$ as shown in Fig．3．

## Step 8.

Calculate surface area $S\left(\Omega_{i}\right)$ and volume $V\left(\Omega_{i}\right)$. From Eq.(8) and Eq.(10), the $S\left(\Omega_{i}\right)$ is given by

$$
\begin{equation*}
S\left(\Omega_{i}\right)=\sum_{j} \sum_{k} S\left(\sigma_{j k}\right) ; j=1, \ldots, N_{\sigma}, \quad k=1, \ldots, N_{\lambda j}-2 \tag{12}
\end{equation*}
$$

and from Eq.(9) and Eq.(11), the $V\left(\Omega_{i}\right)$ is given by

$$
\begin{equation*}
V\left(\Omega_{i}\right)=\sum_{j} \sum_{k} V\left(o_{i}, \sigma_{j k}\right) ; j=1, \ldots, N_{\sigma}, k=1, \ldots, N_{\lambda j}-2 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
V\left(o_{i}, \sigma_{j k}\right)=\frac{1}{3} V\left(\sigma_{j k}\right) h_{j} \tag{14}
\end{equation*}
$$

where $h_{j}$ is the height of the pyramid $o_{i} \sigma_{j}$. The $S\left(\sigma_{j k}\right)$ and $h_{j}$ are signed area and signed height respectively (see Appendix C).

(a)

(b)

(c)

Fig.3. Partition process of a concave Voronoi polyhedron $\Omega_{i}$ shown in (a) into tetrahedra. The Voronoi polyhedron is decomposed to pyramids $o_{i} \sigma_{i} ; j=1, \ldots, 9$. One of the pyramids having the base $\sigma_{1}$ is shown in (b). The pyramid $o_{i} \sigma_{1}$ is further decomposed to tetrahedra $o_{i} \sigma_{11}, o_{i} \sigma_{12}$, and $o_{i} \sigma_{13}$ in (c), where the tetrahedra $o_{i} \sigma_{12}$ and $o_{i} \sigma_{13}$ have positive volume, but the tetrahedron $o_{i} \sigma_{11}$ has negative volume.

## IV．Tests for precision of Numerical Integration Method

## 1．Integration Scheme inside WS Cell

Here，the method to calculate the integral of a function $f(\vec{r})$ in WS cell，

$$
\begin{equation*}
I=\int_{V S-\text { cell }} f(\vec{r}) d \vec{r}, \tag{15}
\end{equation*}
$$

is presented．Firstly，we separate the WS cell into two regions，i．e．，the inside of atomic sphere and the interstitial region．Then the Eq．（15）becomes

$$
\begin{equation*}
I=I_{s}+I_{i} \tag{16}
\end{equation*}
$$

with

$$
I_{s}=\int_{\text {sphere }}^{\text {tomic }} f(\vec{r}) d \vec{r}, \quad I_{i}=\int_{\text {regerion }} \operatorname{lititial} f(\vec{r}) d \vec{r} .
$$

For cubic symmetry systems，the Eq．（16）becomes

$$
\begin{equation*}
I=I_{s}+48 I_{i}^{\prime} \tag{16}
\end{equation*}
$$

where

$$
I_{i}^{\prime}=\int_{\text {region }} / 48 \text { interstitial } f(\vec{r}) d \vec{r}
$$

For tetragonal symmetry systems，the factor 48 changes to 24 ．
The integral $I_{s}$ with radius $r_{a}$ is given by

$$
\begin{equation*}
I_{s}=\int_{0}^{a} g(r) r^{2} d r \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
g(r)=\int_{0}^{2 \pi} \int_{0}^{\pi} f(r, \theta, \phi) \sin \theta d \theta d \phi \tag{18}
\end{equation*}
$$

The Eq．（17）is calculated by a Gauss－Legendre integration formula．

$$
\begin{equation*}
I_{s} \cong Q\left(I_{s}\right)=\sum_{i} \omega_{r i} g\left(r_{i}\right) r_{i}^{2} \quad ; i=1, \ldots, N_{r}, \tag{19}
\end{equation*}
$$

where $\omega_{r i}$ is a weight of the coordinate $r_{i}$ and $N_{r}$ is the number of integration points．The function $g\left(r_{i}\right)$ in Eq．（18）is calculated by a product Gaussian formula ${ }^{5}$ for each $r_{i}$ as

$$
\begin{equation*}
g\left(r_{i}\right) \cong Q\left\{g\left(r_{i}\right)\right\}=\sum_{j}^{N_{s}} \omega_{s j} f\left(r_{i}, \theta_{j}, \phi_{j}\right), \tag{20}
\end{equation*}
$$

where $\omega_{s j}$ is a weight of the coordinate $\left(\theta_{j}, \phi_{j}\right)$ on the sphere with radius $r_{i}$ and $N_{s}$ is the number of integration points．

The integral $I_{i}^{\prime}$ is calculated by the present method．That is，the interstitial region is partitioned into Voronoi polyhedra and then partitioned into tetrahedra by use of the method given in chapter III．The integral of the function is calculated by a cubature formula．The domain of integration in chapter II corresponds to the interstitial region and the integral of a function is calculated by Eq．（3）．

## 2. Voronoi Partition of Interstitial Region

Figure 4(a) illustrates an example of partition of the interstitial region in the WS square cell. The region is enclosed with a circle and edges of the WS cell. The circle is approximated with a Voronoi polygon having the center $o$. The circle is called atomic polygon hereafter. The polygon is constructed by the edges that are perpendicular bisectors of lines drawn from the origin $o$ to the points that are randomly distributed on a circle with twice radius of the original circle. The WS cell can be reduced to $1 / 8$ wedge by symmetry operation. The interstitial region $u_{1} u_{2} u_{3} u_{4}$ is partitioned into twenty pieces of Voronoi polygon. The concave Voronoi polygons exist near the atomic polygon as shown in Fig.4(b) and convex ones exist in the rest region.


Fig. 4 (a) Voronoi partition of the interstitial region in the WS square cell. The circle $o$ is approximated with Voronoi polygon of which the total number of boundary edges is 80 . (b) Magnified figure of region $A$ in (a). The Voronoi polygon $\Omega_{i}$ is concave one.

The construction procedure of the interstitial region in the s.c., f.c.c., b.c.c., and diamond structure is analogous to that of 2D case. The interstitial region is enclosed with an atomic sphere surface and planes of the WS cell. The concave polygons in 2D case correspond to concave polyhedra in 3D case. The atomic sphere is approximated with a Voronoi polyhedron. This polyhedron is called atomic polyhedron. The atomic polyhedron in the WS cell in f.c.c. structure is shown in Fig.5. The WS cell is reduced to $1 / 48$ wedge by symmetry operation. The interstitial region of the $1 / 48$ wedge is shown in Fig.6(a). The sphere surface is approximated with 11 pieces of polygon. The total number of boundary polygons becomes fifteen in this case. The $1 / 48$ interstitial region is partitioned into two Voronoi polyhedra $\Omega_{1}$ and $\Omega_{2}$ as shown in Fig.6(b). In the case of non-uniform distribution of the centers, we distribute further points in each Voronoi polyhedron, of which the number is proportional to the volume of each Voronoi polyhedron, and partition into Voronoi polyhedra. Distributing three points in the $\Omega_{2}$, we partition the $\Omega_{2}$ into three Voronoi polyhedra in Fig.6(c).

The validity of the partition is checked by both the Euler＇s theorem and the sum of volumes of Voronoi polyhedra．The former theorem is given by $N_{\lambda}-N_{\gamma}+N_{\sigma}=2$ ，where $N_{\lambda}$ is the number of vertices，$N_{\gamma}$ is the number of edges，and $N_{\sigma}$ is the number of planes of each Voronoi polyhedron．All Voronoi polyhedra constructed in this study satisfy the theorem．The latter value is equal to the volume of the $1 / 48$ interstitial region．The relative errors of the sum of the volumes in the four structures are less than $10^{-14}$ ．


Fig．5．An atomic polyhedron in f．c．c．WS cell which is composed of thousand pieces of polygon．


Fig． 6 （a）The $1 / 48$ interstitial region of f．c．c．WS cell in Fig．5．（b）Partition of the region in（a） into two Voronoi polyhedra $\Omega_{1}$ and $\Omega_{2}$ ．（c）Further partition of Voronoi polyhedron $\Omega_{2}$ into three Voronoi polyhedra $\Omega_{21}, \Omega_{22}$ ，and $\Omega_{23}$

## 3. Results of Integration

The electron charge density $\rho(\vec{r})$ is a basic integrand of electronic-structure calculations in order to estimate the accuracy of the present method. The $\rho(\vec{r})$ is given by superposition of charge density $\rho^{\operatorname{atom}(\vec{r})}$ of a free atom,

$$
\begin{equation*}
\rho(\vec{r})=\sum_{i} \rho^{\operatorname{atom}}\left(\vec{r}-\vec{R}_{i}\right) \tag{21}
\end{equation*}
$$

where $\vec{R}_{i}$ is the position of nuclei. The charge density $\rho^{\text {atom }(\vec{r}) \text { is expressed by linear }}$ combination of Yukawa type functions ${ }^{8)}$ as

$$
\begin{equation*}
\rho^{\text {atom }}(\vec{r})=\frac{Z}{4 \pi r} \sum_{j=1}^{3} A_{j} \alpha_{j}^{2} \exp \left(-\alpha_{j} r\right) \tag{22}
\end{equation*}
$$

where $Z$ is the nuclear charge and the parameters $A_{j}, \alpha_{j}$ are given by Salvat, F et al. ${ }^{8)}$ The exact charge integral value in the WS cell is $Z$. We choose $\operatorname{Po}(Z=84)$ as s.c., $\mathrm{Cu}(Z=29)$ as f.c.c., $\mathrm{W}(Z=74)$ as b.c.c., and $\mathrm{Si}(Z=14)$ as diamond structure. The exact charge integral value in the interstitial region are 0.9314824307 in s.c., 0.4502970484 in f.c.c., 1.233486671 in b.c.c., and 1.470762851 in diamond structure.

The relative errors of the charge integral value in the interstitial region are shown in Table $\mathrm{I}(\mathrm{a})$-(d) together with the number of integration points. A single number in the second column in Table I indicates that the reduced interstitial region consists of one concave Voronoi polyhedron itself. The accuracy of approximating of the sphere surface depends on the number of the boundary polygons. The number of integration points is fifteen times of the number of tetrahedra and depends on two factors: the number of boundary polygons and the number of Voronoi polyhedra. Therefore it is necessary to increase both numbers for high precision calculation.

In s.c. structure shown in Table I(a), the errors decrease approximately with increasing the number of the integration points. The relative errors of the charge in the interstitial region are less than $10^{-4}$. Then the relative errors of the total charge is less than $10^{-6}$. Thus the accuracy of the charge integral value is sufficient to calculate the cohesive energy based on the density functional theory. In the other structures shown in Table I(b), (c), and (d), the overall features are the same as those of the s.c. structure. Consequently, the present method is proved to be applicable to the charge integral in high precision without depending on the shape of domain.

[^3]Table I．The relative errors and the total charges calculated by the present method for（a）s．c．（Po，$Z=84$ ），（b）f．c．c．（Cu，$Z=29$ ），（c）b．c．c．（W，$Z=74$ ），and（d）diamond（Si， $Z=14)$ structures as a function of the numbers of boundary polygons，Voronoi polyhedra，tetrahedra，and integration points．The number of integration points is fifteen times the number of tetrahedra．The exact charge integral values in the interstitial region are 0.9314824307 for s．c．， 0.4502970484 for f．c．c．， 1.233486671 for b．c．c．，and 1.470762851 for diamond structure．

|  | Number of boundary polygons | Number of Voronoi polyhedra | Number of tetrahedra | Number of integration points | Charge in interstitial region | Relative error | Total charge |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6 | 1 | 12 | 180 | 0.9822443 | $5.45 \mathrm{E}-2$ | 84.050761821 |
|  | 6 | 2 | 24 | 360 | 0.9823663 | $5.46 \mathrm{E}-2$ | 84.050883840 |
|  | 6 | 3 | 36 | 540 | 0.9823628 | $5.46 \mathrm{E}-2$ | 84.050880359 |
|  | 6 | 4 | 52 | 780 | 0.9823592 | $5.46 \mathrm{E}-2$ | 84.050876778 |
|  | 6 | 6 | 80 | 1200 | 0.9823746 | $5.46 \mathrm{E}-2$ | 84.050892155 |
|  | 15 | 1 | 48 | 720 | 0.9333946 | $2.05 \mathrm{E}-3$ | 84.001912134 |
|  | 15 | 2 | 72 | 1080 | 0.9334935 | $2.16 \mathrm{E}-3$ | 84.002011023 |
|  | 15 | 3 | 88 | 1320 | 0.9335003 | $2.17 \mathrm{E}-3$ | 84.002017855 |
|  | 15 | 4 | 100 | 1500 | 0.9334936 | $2.16 \mathrm{E}-3$ | 84.002011172 |
|  | 15 | 6 | 132 | 1980 | 0.9335206 | $2.19 \mathrm{E}-3$ | 84.002038198 |
|  | 25 | 1 | 88 | 1320 | 0.9320878 | 6．50E－4 | 84.000605401 |
|  | 25 | 2 | 112 | 1680 | 0.9321957 | 7．66E－4 | 84.000713225 |
| ¢ | 25 | 3 | 128 | 1920 | 0.9321990 | $7.69 \mathrm{E}-4$ | 84.000716514 |
| － | 25 | 4 | 144 | 2160 | 0.9321925 | $7.62 \mathrm{E}-4$ | 84.000710092 |
|  | 25 | 6 | 180 | 2700 | 0.9322193 | $7.91 \mathrm{E}-4$ | 84.000736834 |
|  | 35 | 1 | 128 | 1920 | 0.9312034 | $3.00 \mathrm{E}-4$ | 83.999720914 |
|  | 35 | 2 | 164 | 2460 | 0.9313088 | $1.86 \mathrm{E}-4$ | 83.999826373 |
|  | 35 | 3 | 180 | 2700 | 0.9313171 | $1.78 \mathrm{E}-4$ | 83.999834640 |
|  | 35 | 4 | 196 | 2940 | 0.9313086 | $1.87 \mathrm{E}-4$ | 83.999826183 |
|  | 35 | 6 | 236 | 3540 | 0.9313385 | $1.54 \mathrm{E}-4$ | 83.999856108 |
|  | 45 | 1 | 168 | 2520 | 0.9313328 | $1.61 \mathrm{E}-4$ | 83.999850378 |
|  | 45 | 2 | 212 | 3180 | 0.9314388 | $4.68 \mathrm{E}-5$ | 83.999956375 |
|  | 45 | 3 | 228 | 3420 | 0.9314475 | $3.75 \mathrm{E}-5$ | 83.999965089 |
|  | 45 | 4 | 244 | 3660 | 0.9314388 | $4.68 \mathrm{E}-5$ | 83.999956383 |
|  | 45 | 6 | 284 | 4260 | 0.9314690 | $1.45 \mathrm{E}-5$ | 83.999986532 |
|  |  | 1 | 208 | 3120 |  |  | 83.999849403 |
|  | 55 | 2 | 260 | 3900 | 0.9314377 | $4.80 \mathrm{E}-5$ | 83.999955293 |
|  | 55 | 3 | 276 | 4140 | 0.9314461 | $3.90 \mathrm{E}-5$ | 83.999963672 |
|  | 55 | 4 | 292 | 4380 | 0.9314374 | $4.83 \mathrm{E}-5$ | 83.999954981 |
|  | 55 | 6 | 336 | 5040 | 0.9314675 | $1.60 \mathrm{E}-5$ | 83.999985105 |


| Number of boundary polygons | Number of Voronoi polyhedra | Number of tetrahedra | Number of integration points | Charge in interstitial region | Relative error | Total charge |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 1 | 12 | 180 | 0.4560236 | $1.27 \mathrm{E}-2$ | 29.005726528 |
| 6 | 2 | 28 | 420 | 0.4560326 | $1.27 \mathrm{E}-2$ | 29.005735595 |
| 6 | 3 | 44 | 660 | 0.4560341 | $1.27 \mathrm{E}-2$ | 29.005737012 |
| 6 | 4 | 60 | 900 | 0.4560320 | $1.27 \mathrm{E}-2$ | 29.005734925 |
| 6 | 6 | 96 | 1440 | 0.4560335 | $1.27 \mathrm{E}-2$ | 29.005736453 |
| 15 | 1 | 48 | 720 | 0.4501929 | $2.31 \mathrm{E}-4$ | 28.999895866 |
| 15 | 2 | 76 | 1140 | 0.4501943 | 2.28E-4 | 28.999897210 |
| 15 | 3 | 96 | 1440 | 0.4502044 | $2.06 \mathrm{E}-4$ | 28.999907376 |
| 15 | 4 | 124 | 1860 | 0.4502054 | $2.04 \mathrm{E}-4$ | 28.999908360 |
| 15 | 6 | 156 | 2340 | 0.4502055 | $2.03 \mathrm{E}-4$ | 28.999908429 |
| 25 | 1 | 88 | 1320 | 0.4504911 | $4.31 \mathrm{E}-4$ | 29.000194065 |
| 25 | 2 | 120 | 1800 | 0.4504963 | $4.43 \mathrm{E}-4$ | 29.000199297 |
| 25 | 3 | 144 | 2160 | 0.4505064 | $4.65 \mathrm{E}-4$ | 29.000209304 |
| 25 | 4 | 172 | 2580 | 0.4505075 | $4.67 \mathrm{E}-4$ | 29.000210429 |
| 25 | 6 | 224 | 3360 | 0.4505076 | $4.68 \mathrm{E}-4$ | 29.000210569 |
| 35 | 1 | 128 | 1920 | 0.4503895 | $2.05 \mathrm{E}-4$ | 29.000092457 |
| 35 | 2 | 148 | 2220 | 0.4504047 | $2.39 \mathrm{E}-4$ | 29.000107615 |
| 35 | 3 | 156 | 2340 | 0.4504048 | $2.39 \mathrm{E}-4$ | 29.000107749 |
| 35 | 4 | 192 | 2880 | 0.4504042 | $2.38 \mathrm{E}-4$ | 29.000107186 |
| 35 | 6 | 248 | 3720 | 0.4504045 | $2.39 \mathrm{E}-4$ | 29.000107491 |
| 45 | 1 | 168 | 2520 | 0.4502851 | $2.65 \mathrm{E}-5$ | 28.999988054 |
| 45 | 2 | 192 | 2880 | 0.4502996 | 5.66E-6 | 29.000002550 |
| 45 | 3 | 200 | 3000 | 0.4502998 | $6.01 \mathrm{E}-6$ | 29.000002708 |
| 45 | 4 | 236 | 3540 | 0.4502990 | $4.41 \mathrm{E}-6$ | 29.000001985 |
| 45 | 6 | 296 | 4440 | 0.4502993 | 5.10E-6 | 29.000002298 |
| 55 | 1 | 208 | 3120 | 0.4502866 | $2.33 \mathrm{E}-5$ | 28.999989515 |
| 55 | 2 | 236 | 3540 | 0.4503011 | 8.89E-6 | 29.000004005 |
| 55 | 3 | 244 | 3660 | 0.4503012 | $9.25 \mathrm{E}-6$ | 29.000004165 |
| 55 | 4 | 288 | 4320 | 0.4503005 | 7.67E-6 | 29.000003456 |
| 55 | 6 | 356 | 5340 | 0.4503008 | $8.39 \mathrm{E}-6$ | 29.000003777 |




## V．Applications to First－Principles Electronic－Structure Calculations

We calculate the cohesive energy of Ar crystal and the binding energies of $\mathrm{Ar}_{2}$ dimer based on the density functional theory of the Thomas－Fermi－Dirac－Weizsäcker model ${ }^{9)}$ to evaluate the present numerical integration method．

## 1．Energy Density Functionals

In the density functional theory of the Thomas－Fermi－Dirac－Weizsäcker model，the total energy of the system is given by

$$
\begin{equation*}
E_{\text {tot }}=E_{\text {kin }}[\rho]+E_{e e}[\rho]+E_{e N}[\rho]+E_{x}[\rho]+E_{N N}, \tag{23}
\end{equation*}
$$

where electron－electron electrostatic energy $E_{\text {ee }}[\rho]$ ，electron－nucleus electrostatic energy $E_{e N}[\rho]$ ，and nucleus－nucleus electrostatic energy $E_{N N}$ are given by

$$
\begin{align*}
& E_{e e}[\rho]=\frac{1}{2} \int V_{e}(\vec{r}) \rho(\vec{r}) d \vec{r},  \tag{24}\\
& E_{e N}[\rho]=\frac{1}{2} \int V_{N}(\vec{r}) \rho(\vec{r}) d \vec{r},  \tag{25}\\
& E_{N N}=\frac{1}{2} \sum_{i \neq j} \sum \frac{Z_{R i} Z_{R j}}{\left|\vec{R}_{i}-\vec{R}_{j}\right|}, \tag{26}
\end{align*}
$$

where $V_{e}(\vec{r})$ is electrostatic potential of electrons and $V_{N}(\vec{r})$ is electrostatic potential of nuclei．The integrals are calculated over all space in the dimer system and over WS cell in crystalline system．The Kinetic energy $E_{\text {kin }}[\rho]$ and the exchange energy $E_{x}[\rho]$ are given by

$$
\begin{align*}
& E_{k i n}=C_{k} \int \rho(\vec{r})^{5 / 3} d \vec{r}+\frac{1}{72} \int \frac{\left.\nabla \rho(\vec{r})\right|^{2}}{\rho(\vec{r})} d \vec{r}, \quad C_{k}=\frac{3}{10}(3 \pi)^{2 / 3},  \tag{27}\\
& E_{x}=C_{e} \int \rho(\vec{r})^{4 / 3} d \vec{r}, \quad C_{e}=-\frac{3}{4}\left(\frac{3}{\pi}\right)^{1 / 3}, \tag{28}
\end{align*}
$$

where second term in Eq．（27）is Weizsäcker term．The charge density $\rho(\vec{r})$ is given by Eq．（21）．The atomic electrostatic potential ${ }^{8}$ ）is given by

$$
\begin{equation*}
V_{e N}^{\text {atom }}(\vec{r})=-\frac{Z}{r}+\int \frac{\rho_{\left(\vec{r}^{\prime}\right)}}{\left|\vec{r}-\vec{r}^{\prime}\right|} d \vec{r}^{\prime}=-\frac{Z}{r} \sum_{j=1}^{3} A_{j} \exp \left(-\alpha_{j} r\right) . \tag{29}
\end{equation*}
$$

The electrostatic energy is calculated as follows．

$$
\begin{equation*}
E_{e e}[\rho]+E_{e N}[\rho]+E_{N N}=\frac{1}{2} \sum_{i} \int V_{e N}^{a \text { atom }}\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \rho\left(\vec{r}^{\prime}\right) d \vec{r}^{\prime}-\frac{1}{2}\left[\sum_{i}^{\prime} V_{e N}^{\text {atom }}\left(\vec{R}_{i}\right)+V_{e}^{\text {atom }}(0)\right] Z, \tag{30}
\end{equation*}
$$

where the $\Sigma^{\prime}$ indicates the exclusion of the vector $\vec{R}_{1}=(0,0,0)$ ．The $V_{e}^{\text {atom }}(0)$ is given by

[^4]\[

$$
\begin{equation*}
V_{e}^{\text {atom }}(0)=Z \sum_{i=1}^{3} A_{i} \alpha_{i} \tag{31}
\end{equation*}
$$

\]

The cohesive (or binding) energy $\Delta E$ per atom is calculated by

$$
\begin{equation*}
\Delta E=\frac{1}{N_{a}} E_{\text {tot }}-E_{\text {tot }}^{\text {atom }}, \tag{32}
\end{equation*}
$$

where $N_{a}$ is the number of atoms in the system and $E_{\text {tot }}^{\text {atom }}$ is the total energy of an isolated atom.

## 2. Cohesive Energy Calculation

The cohesive energy of Ar crystal(f.c.c. structure) is calculated by using the integration points and weights which are examined carefully in Table $I(b)$. The number of integration points in the $1 / 48$ interstitial region is 2,880 . The cohesive energy of Ar crystal is shown in Fig.7. The cohesive energy is converged within a tolerance of $10^{-4}$. The lattice constant given by the present method is 8.85 a.u.. The experimental lattice constant ${ }^{10}$ is 10.0 a.u.. The difference of the lattice constant from the experimental value ${ }^{10)}$ is slightly 1.15 a.u.. Therefore the present numerical integration method is applicable to calculate the cohesive energy of Ar crystal.


Fig.7. Cohesive energy of Ar crystal as a function of lattice constant. The experimental lattice constant ${ }^{10}$ (Exp.) is 10.0 a.u..

[^5]
## 3．Binding Energy Calculation

The atomic positions of $\mathrm{Ar}_{2}$ dimer are arranged as shown in Fig．8（a）．The space is partitioned into three region．The region I is inside an atomic sphere with radius $r_{l}$ ，the region III is outside a sphere with radius $r_{2}$ ，and the region II is the rest region．We calculate the integral of the functions over the regions I and III by Gaussian quadrature and product Gaussian formula．On the other hand，The presented method is used to calculate the integral over the region II．In partitioning the region II into Voronoi polyhedra，we use the $1 / 48$ reduced region although figure $8(\mathrm{~b})$ illustrates the $1 / 16$ reduced region．The binding energy of $\mathrm{Ar}_{2}$ dimer is shown in Fig．9．The number of integration points in the $1 / 48$ region II increases corresponding to the interatomic distance．For example，the maximum and the minimum numbers of points are 30,240 and 27,480 respectively．

The equilibrium interatomic distance calculated by the present method is 6.15 a ．u．．The difference of the equilibrium interatomic distance to experimental value ${ }^{11)}$ is slightly 0.95 a．u．． Therefore the present numerical integration method is applicable to calculate the binding energy of $\mathrm{Ar}_{2}$ dimer．


Fig． 8 （a）Projected figure of the domain of integration to $Y-Z$ plane．The two Ar atoms，of which the interatomic distance is $d$ ，are positioned at $\vec{R}_{1}=(0,0,0)$ and $\vec{R}_{2}=(0,0, d)$ ．The radii $r_{1}$ and $r_{2}$ are 2 and 8 a．u．respectively．（b）The $1 / 16$ reduced region II．The $1 / 8$ inside sphere surface is approximated with 51 pieces of polygon and the $1 / 16$ outside sphere surface is approximated with 100 pieces of polygon．

[^6]

Fig.9. Binding energy of $\mathrm{Ar}_{2}$ dimer as a function of interatomic distance. The experimental equilibrium interatomic distance ${ }^{11)}$ (Exp.) is 7.10 a.u..

## VI. Summary and Conclusions

The author has developed a new numerical integration method in 3D complex domain based on the Voronoi partitions without a coordinate transformation adapted to the shape of the domain. In the method, the domain, of which the boundary surface is approximated with polygons, is partitioned into Voronoi polyhedra corresponding to randomly distributed points. Each Voronoi polyhedron is further partitioned into tetrahedra so as to be applicable to the calculation of the integral. Introduction of concave Voronoi polyhedra frees us from intractable restrictions of the complex domain of integration.

In order to evaluate the present method, we have investigated the two things. Firstly, we have investigated whether or not the present method is effective to the charge integrations in various structures. Then the relative errors have been less than $10^{-6}$. Thus the present method is proved to be applicable to the charge integration in high precision without depending on the shape of the domain. Secondly, we have applied the method to cohesive energy calculations based on density functional theory. Then we have found that the method is applicable to calculate both the cohesive energy of Ar crystal and the binding energy of $\mathrm{Ar}_{2}$ dimer. Consequently, the present method has been proved to be effective for the first-principles electronic-structure calculation.

## Appendix A：Selection Method of Points inside Domain

Here，the selection method of the points existing inside a domain is presented．We assume the boundary $C$ consists of edges in 2D case and consists of polygons in 3D case．We also assume that no point exists on boundary edge in 2D case（boundary polygon in 3D case）．

## A1．The Case of 2D Domain

As shown in Fig．10，we position the origin of the system on the coordinate $r_{\ell}$ and draw a line from the point to $x$－direction．The line intersects with a boundary edge $c_{k}$ ： $\left(x_{c k}, y_{c k}\right)-\left(x_{c k+1}, y_{c k+1}\right)$ at the intersection $\xi_{k}:\left(x_{\xi k}, y_{\xi k}\right)$ ．Then the coordinate of $\xi_{k}$ is given by

$$
\begin{equation*}
x_{\xi k}=\frac{x_{c k+1}-x_{c k}}{y_{c k+1}-y_{c k}} y_{c k}+x_{c k}, \quad y_{\xi k}=0 . \tag{A.1}
\end{equation*}
$$

The coordinates of the intersection are calculated about all boundary edges．The case of $y_{c k+1}-y_{c k}=0$ corresponds to not existing of the intersection．By counting the number of $\xi_{k}$ that satisfies both the condition $x_{\xi k} \geq 0$ and $y_{c k+1} y_{c k}<0$ ，we can distinguish whether the point exists inside the domain or not．That is，if the number is even，then the point is outside the domain $\Omega$ ．Conversely，if the number is odd，the point is inside the domain $\Omega$ ．


Fig．10．Schematic representation of the distribution of random points inside a 2D box shown by the broken line．The solid line represents the boundary $C$ ．

## A2．The Case of 3D Domain

The basic idea is the same as the 2D case．We position the origin of the system at the coordinate $r_{\ell}$ ．The coordinates of the vertices of each boundary polygon $c_{j}$ are denoted by $\left(x_{j k}, y_{j k}, z_{j k}\right) ; j=1, \ldots, N_{c}, k=1, \ldots, N_{j}$ and the component of normal vector $\vec{n}_{j}$ of the $c_{j}$ is denoted by $\left(n_{x j}, n_{y j}, n_{z j}\right)$ ．The coordinates $\left(x_{\xi j}, y_{\xi j}, z_{\xi_{j}}\right)$ of the intersection $\xi_{j}$ between each polygon $c_{j}$ and a line from the point $r_{\ell}$ to x－direction are given by

$$
\begin{equation*}
x_{\xi j}=\frac{n_{x j} x_{j l}+n_{y j} y_{j l}+n_{z j} z_{j l}}{n_{x j}}, \quad y_{\xi j}=z_{\xi j}=0 . \tag{A.2}
\end{equation*}
$$

The case of $n_{x j}=0$ corresponds to not existing of the intersection. By counting the number of $\xi_{j}$ that satisfies both the condition $x_{\zeta j} \geq 0$ and $\xi_{j} \in c_{j}$, we can distinguish whether the point exists inside the domain or not. That is, if the number is even, then the point is outside the domain $\Omega$. Conversely, if the number is odd, the point is inside the domain $\Omega$.

## Appendix B: Selection Method of Vertices of Voronoi Polyhedron

Selection method of the vertices $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{N \lambda}$ of the (concave) Voronoi polyhedron $\Omega_{i}$ is shown by using the example in 2D case as shown in Fig.11. If an intersection of three planes passes through the following three checks, then the intersection is accepted as the vertex of the Voronoi polyhedron $\Omega_{i}$.


Fig.11. An example of intersections around the center $o_{i}$ in 2D case. Shaded region is the outside of the domain $\Omega$.

Consider an intersection $t_{\alpha}=t\left(p_{j}, p_{k}, p_{\ell}\right)$ for planes $p_{j}, p_{k}, p_{\ell} \in P_{i}$.

## Check 1.

When ${ }^{\exists} c_{\beta} \subset\left\{p_{j}, p_{k}, p_{\ell}\right\}$, if $t_{\alpha} \in c_{\beta}$, then the $t_{\alpha}$ passes this check. For instance, the intersection $t_{1}$ does not pass this check, since the intersection is outside the boundary edge $c_{3}$. The intersections $t_{2}$ and $t_{3}$ also do not pass this check.

## Check 2.

If an intersection $t_{\alpha}$ is located outside an perpendicular bisector plane $p_{j}$ which do not include ${ }^{\exists} c_{\alpha}$ ，the $t_{\alpha}$ does not pass this check．For instance，the intersections $t_{4}$ and $t_{5}$ also do not pass this check．

## Check 3.

When $t_{\alpha} \nexists^{\exists} c_{\beta}$ ，if ${ }^{\exists} c_{\beta}$ exists between $o_{i}$ and $t_{\alpha}$ ，i．e．，the segment $o_{i} t_{\alpha} \cap c_{\beta} \neq \varnothing$ ，then the $t_{\alpha}$ does not pass this check．For instance，$t_{6}$ passes this check．However $t_{7}$ does not pass this check because there are $c_{3}$ and $c_{5}$ as the $c_{\beta}$ ．Here，we must pay attention to points such as $t_{8}$ and $t_{9}$ ．Although the intersections $t_{8}$ and $t_{9}$ are not vertices of the concave Voronoi polyhedron $\Omega_{i}$ ，the intersections pass the three checks and accepted as the vertices．However the existence of such an intersection is rare case，because in many cases Check 2 rejects these intersections．If it happens，we redistribute the centers．

## Appendix C：Signed Area and Signed Volume

## C1．Signed area of triangle

Figure 12 illustrates an example of an area $S\left(\sigma_{j k}\right)$ with negative sign．Visually from the figure we obtain the area $S\left(\sigma_{1}\right)$ of concave polygon $\sigma_{1}$ as

$$
\begin{equation*}
S\left(\sigma_{1}\right)=-\left|S\left(\sigma_{11}\right)\right|+\left|S\left(\sigma_{12}\right)\right|+\left|S\left(\sigma_{13}\right)\right| . \tag{C.1}
\end{equation*}
$$

If the vertices are sorted in a constant direction，we can calculate it automatically as

$$
\begin{equation*}
S\left(\sigma_{1}\right) \equiv\left|S^{\prime}\left(\sigma_{1}\right)\right| \tag{C.2}
\end{equation*}
$$

where

$$
\begin{equation*}
S^{\prime}\left(\sigma_{1}\right)=S^{\prime}\left(\sigma_{11}\right)+S^{\prime}\left(\sigma_{12}\right)+S^{\prime}\left(\sigma_{13}\right) \tag{C.3}
\end{equation*}
$$

and

$$
S^{\prime}\left(\sigma_{1 k}\right)=\frac{1}{2}\left|\begin{array}{ll}
x_{\lambda k+1}-x_{\lambda 1} & y_{\lambda k+1}-y_{\lambda 1}  \tag{C.4}\\
x_{\lambda k+2}-x_{\lambda 1} & y_{\lambda k+2}-y_{\lambda 1}
\end{array}\right|, \quad k=1,2,3
$$

where the coordinate of vertices $\lambda_{j k}$ is denoted by $\left(x_{\lambda k}, y_{\lambda k}\right)$ ．Therefore，we can calculate the signed area $S\left(\sigma_{1 k}\right) ; k=1,2,3$ as follows．

$$
S\left(\sigma_{1 k}\right)=\left\{\begin{array}{c}
S^{\prime}\left(\sigma_{1 k}\right) ; \quad S^{\prime}\left(\sigma_{1}\right)>0  \tag{C.5}\\
-S^{\prime}\left(\sigma_{1 k}\right) ; \quad S^{\prime}\left(\sigma_{1}\right)<0
\end{array}=S^{\prime}\left(\sigma_{1 k}\right) \frac{S^{\prime}\left(\sigma_{1}\right)}{\left|S^{\prime}\left(\sigma_{1}\right)\right|}\right.
$$



Fig.12. An example of decomposition of base $\sigma_{1}$ into triangles $\sigma_{11}\left(\lambda_{11}, \lambda_{12}, \lambda_{12}\right)$, $\sigma_{12}\left(\lambda_{11}, \lambda_{13}, \lambda_{14}\right)$, and $\sigma_{13}\left(\lambda_{11}, \lambda_{14}, \lambda_{15}\right)$. The area $S\left(\sigma_{11}\right)$ is negative value, and the other areas $S\left(\sigma_{12}\right)$ and $S\left(\sigma_{13}\right)$ are positive values.

## C2. Signed Volume of Pyramid

First the signed height $\vec{h}_{j}$ of pyramid $o_{i} \sigma_{j}$ is defined in order to define the signed volume $V\left(o_{i} \sigma_{j}\right)$. The basic concept of the signed volume is the same as signed area. Figure 13 shows an example of a concave Voronoi polyhedron which has a pyramid $o_{i} \sigma_{j}$. The height $\vec{h}_{j}$ is negative value as shown in Fig.14. Then the volume $V\left(o_{i} \sigma_{j}\right)$ is negative value. The signed height $\vec{h}_{j}$ is defined as follows.

$$
\vec{h}_{j}=\left\{\begin{array}{l}
\left|\vec{h}_{j}\right| ; \vec{h}_{j} \cdot \vec{n}_{k}>0  \tag{C.6}\\
-\left|\vec{h}_{j}\right| ; \vec{h}_{j} \cdot \vec{n}_{k}<0
\end{array}=\left|\vec{h}_{j}\right| \frac{\vec{h}_{j} \cdot \vec{n}_{k}}{\left|\vec{h}_{j} \cdot \vec{n}_{k}\right|}\right.
$$

where $\vec{n}_{k}$ is the normal vector of the boundary polygon $c_{k}\left(\supset \sigma_{j}\right)$ and $\vec{h}_{j}$ is the vector from the $o_{i}$ to the midpoint between the center $o_{i}$ and symmetry point $m_{k}$.


Fig．13．Figure of a concave Voronoi polyhedron which has pyramid $o_{i} \sigma_{j}$ ．


Fig．14．A pyramid $o_{i} \sigma_{j}$ of which the sign of volume is negative value．

## References

Abramowitz, M. and Stegun,I.A., Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, Dover Books on Mathematics, 1965.
Ashcroft, N.W. and Mermin, N.D., Solid State Physics, Sounders, Philadelphia, 1976.
Averill, F.W. and Painter, G.S., "Pseudospherical integration scheme for electronic-structure calculations", Phys. Rev. B vol.39, 1989, pp.8115~8121.
Becke, A.D., "A multicenter numerical integration scheme for polyatomic molecules", J. Chem. Phys. vol.88, 1988, pp.2547~2553.
Boerrigter, P.M., Velde, G.te, and Baerends, E.J., "Three-dimensional numerical integration for electronic structure calculations", J. Int. J. Quantum Chem. vol.33, 1988, pp.87~113.
Dirac, P.A.M., "Note on exchange phenomena in the Thomas atom", Proc. Camb. Phil. Soc. vol.26, 1930, pp.376~395.
Dreizler, R.M. and Gross, E.K.U. Density Functional Theory, Springer-Verlag, Berlin, 1990.
Fermi, E., "Un Metodo Statistico per la Determinazione di alcune Prioprieta dell'Atomo" Rend. Accad. Naz. Lincei, vol.6, 1927, pp.602~607.
Finney, J.L., "A procedure for the construction of Voronoi polyhedral", J. Comput. Phys. vol.32, 1979, pp.137~143.
Huber, K.P. and Herzberg, G., Molecular Spectra and Molecular structure IV constants of diatomic molecules, Van Nostrand Reinhold Company Inc., 1979.
Kittel, C., Introduction to Solid State Physics, 6th edition, John Wiley \& Sons. New York, 1986.

Kryachko, E.S. and Ludena, E.V., Energy Density Functional Theory of Many-Electron Systems, Kluwer Academic Publishers, 1990.
Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T, Numerical Recipes in Fortran 77: The Art of Scientific Computing, Cambridge University Press, 1992.
Salvat, F., Martinez, J.D., Mayol, R. and Parellada, J., "Analytical Dirac- Hartree-Fock-Slater screening function for atoms (Z=1-92)", Phys. Rev. A vol.36, 1987, pp.467~474.
Slater, J.C., "A Simplification of the Hartree-Fock Method", Phys. Rev. vol.81, 1951, pp.385~ 390.

Stroud, A.H., Approximate Calculations of Multiple Integrals, Prentice-Hall, Englewood Cliffs, NJ, 1971.
Szabo, A. and Ostlund, N.S. Modern Quantum Chemistry, Macmillan, Tokyo, 1982.
Tanemura, M., Ogawa, T. and Ogita, N., "A new algorithm for three-dimensional voronoi tessellation", J. Comput. Phys. vol.51, 1983, pp.191~207.
Thomas, L.H., "The calculation of atomic fields" Proc. Cambridge Phil. Soc. vol.23, 1927, pp.542~548.
Velde, G.te and Baerends, E.J., "Numerical integration for polyatomic systems", J. Comput. Phys. vol.99, 1992, pp.84~98.
Voronoi, G., "Recherches sur les paralléloèdres Primitives", J. Reine Angew. Math. vol.134, 1908, pp.198~287.


[^0]:    ${ }^{1)}$ Becke, A.D., "A multicenter numerical integration scheme for polyatomic molecules", J. Chem. Phys. vol.88, 1988, pp.2547~2553.
    ${ }^{2)}$ Boerrigter, P.M., Velde, G.te, and Baerends, E.J., "Three-dimensional numerical integration for electronic structure calculations", J. Int. J. Quantum Chem. vol.33, 1988, pp.87~113.
    ${ }^{3)}$ Velde, G.te and Baerends, E.J., "Numerical integration for polyatomic systems", J. Comput. Phys. vol.99, 1992, pp.84~98.

[^1]:    ${ }^{4)}$ Averill，F．W．and Painter，G．S．，＂Pseudospherical integration scheme for electronic－structure calculations＂， Phys．Rev．B vol．39，1989，pp．8115～8121．
    ${ }^{5)}$ Stroud，A．H．，Approximate Calculations of Multiple Integrals，Prentice－Hall，Englewood Cliffs，NJ， 1971.

[^2]:    ${ }^{6)}$ Finney, J.L., "A procedure for the construction of Voronoi polyhedra", J. Comput. Phys. vol.32, 1979, pp. 137 $\sim 143$.
    ${ }^{7)}$ Tanemura, M., Ogawa, T. and Ogita, N., "A new algorithm for three- dimensional voronoi tessellation", $J$. Comput. Phys. vol.51, 1983, pp.191~207.

[^3]:    ${ }^{8)}$ Salvat, F., Martinez, J.D., Mayol, R. and Parellada, J., "Analytical Dirac-Hartree- Fock-Slater screening function for atoms (Z=1-92)", Phys. Rev. A vol.36, 1987, pp.467~474.

[^4]:    ${ }^{9)}$ Kryachko，E．S．and Ludena，E．V．，Energy Density Functional Theory of Many－Electron Systems，Kluwer Academic Publishers， 1990.

[^5]:    ${ }^{10)}$ Kittel, C., Introduction to Solid State Physics, 6th edition, John Wiley \& Sons. New York, 1986.

[^6]:    ${ }^{11)}$ Huber，K．P．and Herzberg，G．，Molecular Spectra and Molecular structure IV constants of diatomic molecules，Van Nostrand Reinhold Company Inc．， 1979.

